top of page

村上大輔の論文がSpatial Statistics誌に掲載されました!

弊社村上大輔が1st authorとなる犯罪予測に関する新しい手法の論文がpublishされました!


Title: “Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian spatial data”

Author: Daisuke Murakami, MamiKajita, SeijiKajita and Tomoko Matsui

Spatial Statistics, 2021, 100520

ree

<Abstract>

As with the advancement of geographical information systems, non-Gaussian spatial data sets are getting larger and more diverse. This study develops a general framework for fast and flexible non-Gaussian regression, especially for spatial/spatiotemporal modeling. The developed model, termed the compositionally-warped additive mixed model (CAMM), combines an additive mixed model (AMM) and the compositionally-warped Gaussian process to model a wide variety of non-Gaussian continuous data including spatial and other effects. A specific advantage of the proposed CAMM is that it requires no explicit assumption of data distribution unlike existing AMMs. Monte Carlo experiments show the estimation accuracy and computational efficiency of CAMM for modeling non-Gaussian data including fat-tailed and/or skewed distributions. Finally, the model is applied to crime data to examine the empirical performance of the regression analysis and prediction. The result shows that CAMM provides intuitively reasonable coefficient estimates and outperforms AMM in terms of prediction accuracy. CAMM is verified to be a fast and flexible model that potentially covers a wide variety of non-Gaussian data modeling.



 
 

最新記事

すべて表示
株式会社Singular Perturbations、 ブラジル連邦共和国/犯罪予測AI×ドローンによる広域インフラ警備最適化調査事業が、経済産業省の令和6年度補正グローバルサウス未来志向型共創等事業費補助金(小規模実証・FS事業)に採択

ブラジル連邦共和国/犯罪予測 AI×ドローンによる広域インフラ警備最適化調査事業 株式会社Singular Perturbations(本社:東京都千代田区、取締役社長:梶田 真実、以下SP社)は、2025年8月22日、ブラジル連邦共和国/犯罪予測AI×ドローンによる広域...

 
 
bottom of page